TOPICS
Search

Search Results for ""


5811 - 5820 of 13134 for complexity theorySearch Results
The q-analog of integration is given by int_0^1f(x)d(q,x)=(1-q)sum_(i=0)^inftyf(q^i)q^i, (1) which reduces to int_0^1f(x)dx (2) in the case q->1^- (Andrews 1986 p. 10). ...
The q-analog of pi pi_q can be defined by setting a=0 in the q-factorial [a]_q!=1(1+q)(1+q+q^2)...(1+q+...+q^(a-1)) (1) to obtain ...
A q-analog of the Saalschütz theorem due to Jackson is given by where _3phi_2 is the q-hypergeometric function (Koepf 1998, p. 40; Schilling and Warnaar 1999).
There are several q-analogs of the sine function. The two natural definitions of the q-sine defined by Koekoek and Swarttouw (1998) are given by sin_q(z) = ...
A q-analog of Zeilberger's algorithm.
A regular continued fraction is a simple continued fraction x = b_0+1/(b_1+1/(b_2+1/(b_3+...))) (1) = K_(k=1)^(infty)1/(b_k) (2) = [b_0;b_1,b_2,...], (3) where b_0 is an ...
The Alexander polynomial is a knot invariant discovered in 1923 by J. W. Alexander (Alexander 1928). The Alexander polynomial remained the only known knot polynomial until ...
Apéry's numbers are defined by A_n = sum_(k=0)^(n)(n; k)^2(n+k; k)^2 (1) = sum_(k=0)^(n)([(n+k)!]^2)/((k!)^4[(n-k)!]^2) (2) = _4F_3(-n,-n,n+1,n+1;1,1,1;1), (3) where (n; k) ...
Apéry's constant is defined by zeta(3)=1.2020569..., (1) (OEIS A002117) where zeta(z) is the Riemann zeta function. B. Haible and T. Papanikolaou computed zeta(3) to 1000000 ...
The characteristic polynomial is the polynomial left-hand side of the characteristic equation det(A-lambdaI)=0, (1) where A is a square matrix and I is the identity matrix of ...
1 ... 579|580|581|582|583|584|585 ... 1314 Previous Next

...