Search Results for ""
3751 - 3760 of 13134 for complexity theorySearch Results
A polynomial is said to be irreducible if it cannot be factored into nontrivial polynomials over the same field. For example, in the field of rational polynomials Q[x] (i.e., ...
An integer j(n) is called a jumping champion if j(n) is the most frequently occurring difference between consecutive primes <=n (Odlyzko et al. 1999). This term was coined by ...
Kloosterman's sum is defined by S(u,v,n)=sum_(h)exp[(2pii(uh+vh^_))/n], (1) where h runs through a complete set of residues relatively prime to n and h^_ is defined by hh^_=1 ...
Two oriented knots (or links) can be summed by placing them side by side and joining them by straight bars so that orientation is preserved in the sum. The knot sum is also ...
The most general form of Lagrange's group theorem, also known as Lagrange's lemma, states that for a group G, a subgroup H of G, and a subgroup K of H, (G:K)=(G:H)(H:K), ...
The term "(a,b)-leaper" (sometimes explicitly called a "single-pattern leaper") describes a fairy chess piece such as a knight that may make moves which simultaneously change ...
Legendre's conjecture asserts that for every n there exists a prime p between n^2 and (n+1)^2 (Hardy and Wright 1979, p. 415; Ribenboim 1996, pp. 397-398). It is one of ...
An operation on rings and modules. Given a commutative unit ring R, and a subset S of R, closed under multiplication, such that 1 in S, and 0 not in S, the localization of R ...
Let P, Q be integers satisfying D=P^2-4Q>0. (1) Then roots of x^2-Px+Q=0 (2) are a = 1/2(P+sqrt(D)) (3) b = 1/2(P-sqrt(D)), (4) so a+b = P (5) ab = 1/4(P^2-D) (6) = Q (7) a-b ...
The Markov numbers m are the union of the solutions (x,y,z) to the Markov equation x^2+y^2+z^2=3xyz, (1) and are related to Lagrange numbers L_n by L_n=sqrt(9-4/(m^2)). (2) ...
...
View search results from all Wolfram sites (28442 matches)

