TOPICS
Search

Search Results for ""


6441 - 6450 of 13135 for complex numberSearch Results
The evolute of the epicycloid x = (a+b)cost-bcos[((a+b)/b)t] (1) y = (a+b)sint-bsin[((a+b)/b)t] (2) is another epicycloid given by x = a/(a+2b){(a+b)cost+bcos[((a+b)/b)t]} ...
The involute of the epicycloid x = (a+b)cost-bcos[((a+b)/b)t] (1) y = (a+b)sint-bsin[((a+b)/b)t] (2) is another epicycloid given by x = (a+2b)/a{(a+b)cost+bcos[((a+b)/b)t]} ...
The radial curve of an epicycloid is shown above for an epicycloid with four cusps. Although it is claimed to be a rose curve by Lawrence (1972), it is not.
A morphism f:Y->X in a category is an epimorphism if, for any two morphisms u,v:X->Z, uf=vf implies u=v. In the categories of sets, groups, modules, etc., an epimorphism is ...
The epispiral is a plane curve with polar equation r=asec(ntheta). There are n sections if n is odd and 2n if n is even. A slightly more symmetric version considers instead ...
The inverse curve of the epispiral r=asec(ntheta) with inversion center at the origin and inversion radius k is the rose curve r=(kcos(ntheta))/a.
The parametric equations of the evolute of an epitrochoid specified by circle radii a and b with offset h are x = ...
An equation is a mathematical expression stating that two or more quantities are the same as one another, also called an equality, formula, or identity.
A polygon whose vertex angles are equal (Williams 1979, p. 32).
Line segment ranges and pencils which have equal cross ratios are said to be equicross.
1 ... 642|643|644|645|646|647|648 ... 1314 Previous Next

...