Search Results for ""
6441 - 6450 of 13135 for complex numberSearch Results
The evolute of the epicycloid x = (a+b)cost-bcos[((a+b)/b)t] (1) y = (a+b)sint-bsin[((a+b)/b)t] (2) is another epicycloid given by x = a/(a+2b){(a+b)cost+bcos[((a+b)/b)t]} ...
The involute of the epicycloid x = (a+b)cost-bcos[((a+b)/b)t] (1) y = (a+b)sint-bsin[((a+b)/b)t] (2) is another epicycloid given by x = (a+2b)/a{(a+b)cost+bcos[((a+b)/b)t]} ...
The radial curve of an epicycloid is shown above for an epicycloid with four cusps. Although it is claimed to be a rose curve by Lawrence (1972), it is not.
A morphism f:Y->X in a category is an epimorphism if, for any two morphisms u,v:X->Z, uf=vf implies u=v. In the categories of sets, groups, modules, etc., an epimorphism is ...
The epispiral is a plane curve with polar equation r=asec(ntheta). There are n sections if n is odd and 2n if n is even. A slightly more symmetric version considers instead ...
The inverse curve of the epispiral r=asec(ntheta) with inversion center at the origin and inversion radius k is the rose curve r=(kcos(ntheta))/a.
The parametric equations of the evolute of an epitrochoid specified by circle radii a and b with offset h are x = ...
An equation is a mathematical expression stating that two or more quantities are the same as one another, also called an equality, formula, or identity.
A polygon whose vertex angles are equal (Williams 1979, p. 32).
Line segment ranges and pencils which have equal cross ratios are said to be equicross.
...
View search results from all Wolfram sites (64645 matches)

