Search Results for ""
771 - 780 of 3946 for complex functionSearch Results
There are at least two distinct (though related) notions of the term Hilbert algebra in functional analysis. In some literature, a linear manifold A of a (not necessarily ...
A vector space V with a ring structure and a vector norm such that for all v,W in V, ||vw||<=||v||||w||. If V has a multiplicative identity 1, it is also required that ...
The hacovercosine, also known as the hacoversed cosine and cohavercosine, is a little-used trigonometric function defined by hacovercos(z) = covercosz (1) = 1/2(1+sinz), (2) ...
The vercosine, written vercos(z) and also known as the "versed cosine," is a little-used trigonometric function defined by vercos(z) = 2cos^2(1/2z) (1) = 1+cosz, (2) where ...
The elliptic logarithm is generalization of integrals of the form int_infty^x(dt)/(sqrt(t^2+at)), for a real, which can be expressed in terms of logarithmic and inverse ...
The three circles theorem, also called Hadamard's three circles theorem (Edwards 2001, p. 187), states that if f is an analytic function in the annulus 0<r_1<|z|<r_2<infty, ...
An n×n complex matrix A is called positive definite if R[x^*Ax]>0 (1) for all nonzero complex vectors x in C^n, where x^* denotes the conjugate transpose of the vector x. In ...
Let lambda be (possibly complex) eigenvalues of a set of random n×n real matrices with entries independent and taken from a standard normal distribution. Then as n->infty, ...
If a function analytic at the origin has no singularities other than poles for finite x, and if we can choose a sequence of contours C_m about z=0 tending to infinity such ...
The field F^_ is called an algebraic closure of F if F^_ is algebraic over F and if every polynomial f(x) in F[x] splits completely over F^_, so that F^_ can be said to ...
...