TOPICS
Search

Search Results for ""


121 - 130 of 3197 for chess mathSearch Results
The Randić matrix A_(Randic) of a simple graph is a weighted adjacency matrix with weight f(d_i,d_j)=1/(sqrt(d_id_j)), (1) where d_i are the vertex degrees of the graph. In ...
The Randić spectral radius rho_(Randic) of a graph is defined as the largest eigenvalue of its Randić matrix.
For |q|<1, the Rogers-Ramanujan identities are given by (Hardy 1999, pp. 13 and 90), sum_(n=0)^(infty)(q^(n^2))/((q)_n) = 1/(product_(n=1)^(infty)(1-q^(5n-4))(1-q^(5n-1))) ...
Let the minimal length of an addition chain for a number n be denoted l(n). Then the Scholz conjecture, also called the Scholz-Brauer conjecture or Brauer-Scholz conjecture, ...
Let p run over all distinct primitive ordered periodic geodesics, and let tau(p) denote the positive length of p, then every even function h(rho) analytic in ...
Consider the sum (1) where the x_js are nonnegative and the denominators are positive. Shapiro (1954) asked if f_n(x_1,x_2,...,x_n)>=1/2n (2) for all n. It turns out ...
For any M, there exists a t^' such that the sequence n^2+t^', where n=1, 2, ... contains at least M primes.
For a connection A and a positive spinor phi in Gamma(V_+), Witten's equations (also called the Seiberg-Witten invariants) are given by D_Aphi = 0 (1) F_+^A = ...
Let f be a real-valued, continuous, and strictly increasing function on [0,c] with c>0. If f(0)=0, a in [0,c], and b in [0,f(c)], then int_0^af(x)dx+int_0^bf^(-1)(x)dx>=ab, ...
Let the divisor function d(n) be the number of divisors of n (including n itself). For a prime p, d(p)=2. In general, sum_(k=1)^nd(k)=nlnn+(2gamma-1)n+O(n^theta), where gamma ...
1 ... 10|11|12|13|14|15|16 ... 320 Previous Next

...