TOPICS
Search

Search Results for ""


7961 - 7970 of 13134 for catastrophe theorySearch Results
Given a polynomial p(x)=a_nx^n+a_(n-1)x^(n-1)+...+a_1x+a_0 (1) of degree n with roots alpha_i, i=1, ..., n and a polynomial q(x)=b_mx^m+b_(m-1)x^(m-1)+...+b_1x+b_0 (2) of ...
A subspace A of X is called a retract of X if there is a continuous map f:X->X (called a retraction) such that for all x in X and all a in A, 1. f(x) in A, and 2. f(a)=a. ...
A retraction is a continuous map of a space onto a subspace leaving each point of the subspace fixed. Alternatively, retraction can refer to withdrawal of a paper containing ...
For P and Q polynomials in n variables, |P·Q|_2^2=sum_(i_1,...,i_n>=0)(|P^((i_1,...,i_n))(D_1,...,D_n)Q(x_1,...,x_n)|_2^2)/(i_1!...i_n!), where D_i=partial/partialx_i, |X|_2 ...
A polyhedron with extra square faces, given by the Schläfli symbol r{p; q}.
A beautiful class of polyhedra composed of rhombic faces discovered accidentally by R. Towle while attempting to develop a function to create a rhombic hexahedron from a ...
The dual polyhedron of the rhombicosahedron U_(56) and Wenninger dual W_(96).
A parallelogram in which angles are oblique and adjacent sides are of unequal length.
S_n(z) = zj_n(z)=sqrt((piz)/2)J_(n+1/2)(z) (1) C_n(z) = -zn_n(z)=-sqrt((piz)/2)N_(n+1/2)(z), (2) where j_n(z) and n_n(z) are spherical Bessel functions of the first and ...
P(Z)=Z/(sigma^2)exp(-(Z^2+|V|^2)/(2sigma^2))I_0((Z|V|)/(sigma^2)), where I_0(z) is a modified Bessel function of the first kind and Z>0. For a derivation, see Papoulis ...
1 ... 794|795|796|797|798|799|800 ... 1314 Previous Next

...