Given a polynomial 
(1)
  
 
of degree  
 with roots  ,
  , ...,   and a polynomial 
(2)
  
 
of degree  
 with roots  ,
  , ...,  , the resultant  , also denoted   and also called the eliminant, is defined by
(3)
  
 
(Trott 2006, p. 26).
Amazingly, the resultant is also given by the determinant 
of the corresponding Sylvester matrix .
Kronecker gave a series of lectures on resultants during the summer of 1885 (O'Connor and Robertson 2005).
An important application of the resultant is the elimination of one variable from a system of two polynomial equations (Trott 2006, p. 26).
The resultant of two polynomials can be computed using the Wolfram Language  function Resultant  [poly1 ,
 poly2 , var ]. This command accepts the following methods: Automatic ,
 SylvesterMatrix , BezoutMatrix , Subresultants , and Modular ,
 where the optimal choice depends dramatically on the concrete polynomial pair under
 consideration and typically requires some experimentation. For high-order univariate
 polynomials  over the integers, the option setting Modular  is frequently
 the fastest (Trott 2006, p. 29).
There exists an algorithm  similar to the Euclidean
algorithm  for computing resultants (Pohst and Zassenhaus 1989).
Resultants for a few simple pairs of polynomials include
Given   and  , then
(7)
  
 
is a polynomial  of degree  , having as its roots all sums of
 the form   .
 
See also Gröbner Basis , 
Polynomial Discriminant , 
Subresultant , 
Sylvester
 Matrix 
Explore with Wolfram|Alpha 
References Apostol, T. M. "Resultants of Cyclotomic Polynomials." Proc. Amer. Math. Soc.  24 , 457-462, 1970. Apostol, T. M.
 "The Resultant of the Cyclotomic Polynomials   and  ." Math. Comput.  29 , 1-6, 1975. Bikker,
 P. and Uteshev, A. Y. "On the Bézout Construction of the Resultant."
 J. Symb. Comput.  28 , 45-88, 1999. Bykov, V.; Kytmanov,
 A.; Lazman, M.; and Passare, M. (Eds.). Elimination
 Methods in Polynomial Computer Algebra.   Dordrecht, Netherlands: Kluwer, 1998. Childs,
 L. A
 Concrete Introduction to Higher Algebra.   New York: Springer-Verlag, 1992. Cohen,
 H. "Resultants and Discriminants." §3.3.2 in A
 Course in Computational Algebraic Number Theory.   New York: Springer-Verlag,
 pp. 119-123, 1993. Cohen, J. S. Computer
 Algebra and Symbolic Computation: Mathematical Methods.   Wellesley: A K Peters,
 2003. Davenport, J. H.; Siret, Y.; and Tournier, E. Computer
 Algebra: Systems and Algorithms for Algebraic Computations.   London: Academic
 Press, 1993. Gelfand, I. M.; Kapranov, M.; and Zelevinsky, A. Discriminants,
 Resultants and Multidimensional Resultants.   Boston: Birkhäuser, 1994. Maculay,
 F. S. The
 Algebraic Theory of Modular Systems.   Cambridge: Cambridge University Press,
 1916. O'Connor, J. J. and Robertson, E. F. "Henry Burchard
 Fine." August 2005. http://www-groups.dcs.st-and.ac.uk/~history/Biographies/Fine_Henry.html . Pohst,
 M. and Zassenhaus, H. Algorithmic
 Algebraic Number Theory.   Cambridge, England: Cambridge University Press,
 1989. Prasalov, V. V. Polynomials.  
 Berlin: Springer, 2004. Simpson, J. A. and Weiner, E. S. C.
 (Preparers). The
 Compact Oxford English Dictionary, 2nd ed.   Oxford, England: Clarendon Press,
 p. 503, 1992. Sturmfels, B. In Applications
 of Computational Algebraic Geometry. American Mathematical Society Short Course January
 6-7, 1997 San Diego, California   (Ed. D. A. Cox and B. Sturmfels).
 Providence, RI: Amer. Math. Soc., 1997. Trott, M. The
 Mathematica GuideBook for Symbolics.   New York: Springer-Verlag, pp. 26-29,
 2006. http://www.mathematicaguidebooks.org/ . Wagon,
 S. Mathematica
 in Action.   New York: W. H. Freeman, p. 348, 1991. Wee,
 C. E. and Goldman, R. N. IEEE Comput. Graphics Appl.  No. 1,
 69, 1995. Wee, C. E. and Goldman, R. N. IEEE Comput. Graphics
 Appl.  No. 3, 60, 1995. Referenced on Wolfram|Alpha Resultant 
Cite this as: 
Weisstein, Eric W.  "Resultant." From MathWorld  --A Wolfram Resource. https://mathworld.wolfram.com/Resultant.html 
Subject classifications