TOPICS
Search

Search Results for ""


2421 - 2430 of 13135 for calculusSearch Results
Using the notation of Byerly (1959, pp. 252-253), Laplace's equation can be reduced to (1) where alpha = cint_c^lambda(dlambda)/(sqrt((lambda^2-b^2)(lambda^2-c^2))) (2) = ...
In spherical coordinates, the scale factors are h_r=1, h_theta=rsinphi, h_phi=r, and the separation functions are f_1(r)=r^2, f_2(theta)=1, f_3(phi)=sinphi, giving a Stäckel ...
Let a, b, and c be the lengths of the legs of a triangle opposite angles A, B, and C. Then the law of cosines states a^2 = b^2+c^2-2bccosA (1) b^2 = a^2+c^2-2accosB (2) c^2 = ...
In functional analysis, the Lax-Milgram theorem is a sort of representation theorem for bounded linear functionals on a Hilbert space H. The result is of tantamount ...
The second solution Q_l(x) to the Legendre differential equation. The Legendre functions of the second kind satisfy the same recurrence relation as the Legendre polynomials. ...
Lehmer (1938) showed that every positive irrational number x has a unique infinite continued cotangent representation of the form x=cot[sum_(k=0)^infty(-1)^kcot^(-1)b_k], (1) ...
The Lehmer cotangent expansion for which the convergence is slowest occurs when the inequality in the recurrence equation b_k>=b_(k-1)^2+b_(k-1)+1. (1) for ...
The appearance of nontrivial zeros (i.e., those along the critical strip with R[z]=1/2) of the Riemann zeta function zeta(z) very close together. An example is the pair of ...
The lemniscate functions arise in rectifying the arc length of the lemniscate. The lemniscate functions were first studied by Jakob Bernoulli and Giulio Fagnano. A historical ...
On a Riemannian manifold M, there is a canonical connection called the Levi-Civita connection (pronounced lē-vē shi-vit-e), sometimes also known as the Riemannian connection ...
1 ... 240|241|242|243|244|245|246 ... 1314 Previous Next

...