Search Results for ""
241 - 250 of 13135 for calculusSearch Results
A piecewise function is a function that is defined on a sequence of intervals. A common example is the absolute value, |x|={-x for x<0; 0 for x=0; x for x>0. (1) Piecewise ...
Oloa (2010, pers. comm., Jan. 20, 2010) has considered the following integrals containing nested radicals of 1/2 plus terms in theta^2 and ln^2costheta: R_n^- = (1) R_n^+ = ...
Let a closed interval [a,b] be partitioned by points a<x_1<x_2<...<x_(n-1)<b, where the lengths of the resulting intervals between the points are denoted Deltax_1, Deltax_2, ...
By analogy with the sinc function, define the sinhc function by sinhc(z)={(sinhz)/z for z!=0; 1 for z=0. (1) Since sinhx/x is not a cardinal function, the "analogy" with the ...
For a scalar function f over a surface parameterized by u and v, the surface integral is given by Phi = int_Sfda (1) = int_Sf(u,v)|T_uxT_v|dudv, (2) where T_u and T_v are ...
By analogy with the tanc function, define the tanhc function by tanhc(z)={(tanhz)/z for z!=0; 1 for z=0. (1) It has derivative (dtanhc(z))/(dz)=(sech^2z)/z-(tanhz)/(z^2). (2) ...
The three circles theorem, also called Hadamard's three circles theorem (Edwards 2001, p. 187), states that if f is an analytic function in the annulus 0<r_1<|z|<r_2<infty, ...
The q-analog of integration is given by int_0^1f(x)d(q,x)=(1-q)sum_(i=0)^inftyf(q^i)q^i, (1) which reduces to int_0^1f(x)dx (2) in the case q->1^- (Andrews 1986 p. 10). ...
In algebra, a period is a number that can be written an integral of an algebraic function over an algebraic domain. More specifically, a period is a real number ...
Green's theorem is a vector identity which is equivalent to the curl theorem in the plane. Over a region D in the plane with boundary partialD, Green's theorem states ...
...
View search results from all Wolfram sites (19164 matches)

