TOPICS
Search

Search Results for ""


1481 - 1490 of 1777 for Well DefinedSearch Results
The double factorial of a positive integer n is a generalization of the usual factorial n! defined by n!!={n·(n-2)...5·3·1 n>0 odd; n·(n-2)...6·4·2 n>0 even; 1 n=-1,0. (1) ...
Given a planar graph G, a geometric dual graph and combinatorial dual graph can be defined. Whitney showed that these are equivalent (Harary 1994), so that one may speak of ...
Let the elliptic modulus k satisfy 0<k^2<1, and the Jacobi amplitude be given by phi=amu with -pi/2<phi<pi/2. The incomplete elliptic integral of the first kind is then ...
The elliptic lambda function lambda(tau) is a lambda-modular function defined on the upper half-plane by lambda(tau)=(theta_2^4(0,q))/(theta_3^4(0,q)), (1) where tau is the ...
Erfc is the complementary error function, commonly denoted erfc(z), is an entire function defined by erfc(z) = 1-erf(z) (1) = 2/(sqrt(pi))int_z^inftye^(-t^2)dt. (2) It is ...
The Euler-Lagrange differential equation is the fundamental equation of calculus of variations. It states that if J is defined by an integral of the form J=intf(t,y,y^.)dt, ...
There are (at least) three types of Euler transforms (or transformations). The first is a set of transformations of hypergeometric functions, called Euler's hypergeometric ...
Euler conjectured that at least n nth powers are required for n>2 to provide a sum that is itself an nth power. The conjecture was disproved by Lander and Parkin (1967) with ...
Consider a first-order ODE in the slightly different form p(x,y)dx+q(x,y)dy=0. (1) Such an equation is said to be exact if (partialp)/(partialy)=(partialq)/(partialx). (2) ...
A field K is said to be an extension field (or field extension, or extension), denoted K/F, of a field F if F is a subfield of K. For example, the complex numbers are an ...
1 ... 146|147|148|149|150|151|152 ... 178 Previous Next

...