Search Results for ""
331 - 340 of 2393 for Voronin Universality TheoremSearch Results
![](/common/images/search/spacer.gif)
Euler's 6n+1 theorem states that every prime of the form 6n+1, (i.e., 7, 13, 19, 31, 37, 43, 61, 67, ..., which are also the primes of the form 3n+1; OEIS A002476) can be ...
The theorem, originally conjectured by Berge (1960, 1961), that a graph is perfect iff neither the graph nor its graph complement contains an odd graph cycle of length at ...
The asymptotic form of the n-step Bernoulli distribution with parameters p and q=1-p is given by P_n(k) = (n; k)p^kq^(n-k) (1) ∼ 1/(sqrt(2pinpq))e^(-(k-np)^2/(2npq)) (2) ...
The Riemann zeta function is an extremely important special function of mathematics and physics that arises in definite integration and is intimately related with very deep ...
Specifying three sides uniquely determines a triangle whose area is given by Heron's formula, K=sqrt(s(s-a)(s-b)(s-c)), (1) where s=1/2(a+b+c) (2) is the semiperimeter of the ...
The point of coincidence of P and P^' in Fagnano's theorem.
Specifying three angles A, B, and C does not uniquely define a triangle, but any two triangles with the same angles are similar. Specifying two angles of a triangle ...
Specifying two angles A and B and a side a opposite A uniquely determines a triangle with area K = (a^2sinBsinC)/(2sinA) (1) = (a^2sinBsin(pi-A-B))/(2sinA). (2) The third ...
Specifying two adjacent angles A and B and the side between them c uniquely (up to geometric congruence) determines a triangle with area K=(c^2)/(2(cotA+cotB)). (1) The angle ...
Specifying two sides and the angle between them uniquely (up to geometric congruence) determines a triangle. Let c be the base length and h be the height. Then the area is ...
![](/common/images/search/spacer.gif)
...