Search Results for ""
431 - 440 of 1507 for Trigonometric equationsSearch Results
A determinant which arises in the solution of the second-order ordinary differential equation x^2(d^2psi)/(dx^2)+x(dpsi)/(dx)+(1/4h^2x^2+1/2h^2-b+(h^2)/(4x^2))psi=0. (1) ...
z(1-z)(d^2y)/(dz^2)+[c-(a+b+1)z](dy)/(dz)-aby=0. It has regular singular points at 0, 1, and infty. Every second-order ordinary differential equation with at most three ...
The complex second-order ordinary differential equation x^2y^('')+xy^'-(ix^2+nu^2)y=0 (1) (Abramowitz and Stegun 1972, p. 379; Zwillinger 1997, p. 123), whose solutions can ...
In bispherical coordinates, Laplace's equation becomes (1) Attempt separation of variables by plugging in the trial solution f(u,v,phi)=sqrt(coshv-cosu)U(u)V(v)Psi(psi), (2) ...
In toroidal coordinates, Laplace's equation becomes (1) Attempt separation of variables by plugging in the trial solution f(u,v,phi)=sqrt(coshu-cosv)U(u)V(v)Psi(psi), (2) ...
The Lommel differential equation is a generalization of the Bessel differential equation given by z^2y^('')+zy^'+(z^2-nu^2)y=kz^(mu+1), (1) or, in the most general form, by ...
The second-order ordinary differential equation x^2(d^2y)/(dx^2)+x(dy)/(dx)-(x^2+n^2)y=0. (1) The solutions are the modified Bessel functions of the first and second kinds, ...
The modified spherical Bessel differential equation is given by the spherical Bessel differential equation with a negative separation constant, ...
To solve the system of differential equations (dx)/(dt)=Ax(t)+p(t), (1) where A is a matrix and x and p are vectors, first consider the homogeneous case with p=0. The ...
Following the work of Fuchs in classifying first-order ordinary differential equations, Painlevé studied second-order ordinary differential equation of the form ...
...
View search results from all Wolfram sites (45060 matches)

