TOPICS
Search

Search Results for ""


501 - 510 of 3505 for Theta functionSearch Results
An operator A:f^((n))(I)|->f(I) assigns to every function f in f^((n))(I) a function A(f) in f(I). It is therefore a mapping between two function spaces. If the range is on ...
SNTP(n) is the smallest prime such that p#-1, p#, or p#+1 is divisible by n, where p# is the primorial of p. Ashbacher (1996) shows that SNTP(n) only exists 1. If there are ...
The wave equation in prolate spheroidal coordinates is del ...
Let omega_1 and omega_2 be periods of a doubly periodic function, with tau=omega_2/omega_1 the half-period ratio a number with I[tau]!=0. Then Klein's absolute invariant ...
Q_n^((alpha,beta))(x)=2^(-n-1)(x-1)^(-alpha)(x+1)^(-beta) ×int_(-1)^1(1-t)^(n+alpha)(1+t)^(n+beta)(x-t)^(-n-1)dt. In the exceptional case n=0, alpha+beta+1=0, a nonconstant ...
The wave equation in oblate spheroidal coordinates is del ^2Phi+k^2Phi=partial/(partialxi_1)[(xi_1^2+1)(partialPhi)/(partialxi_1)] ...
A class of area-preserving maps of the form theta_(i+1) = theta_i+2pialpha(r_i) (1) r_(i+1) = r_i, (2) which maps circles into circles but with a twist resulting from the ...
The second solution Q_l(x) to the Legendre differential equation. The Legendre functions of the second kind satisfy the same recurrence relation as the Legendre polynomials. ...
The value for zeta(2)=sum_(k=1)^infty1/(k^2) (1) can be found using a number of different techniques (Apostol 1983, Choe 1987, Giesy 1972, Holme 1970, Kimble 1987, Knopp and ...
The spherical harmonics Y_l^m(theta,phi) are the angular portion of the solution to Laplace's equation in spherical coordinates where azimuthal symmetry is not present. Some ...
1 ... 48|49|50|51|52|53|54 ... 351 Previous Next

...