Search Results for ""
501 - 510 of 3505 for Theta functionSearch Results
An operator A:f^((n))(I)|->f(I) assigns to every function f in f^((n))(I) a function A(f) in f(I). It is therefore a mapping between two function spaces. If the range is on ...
SNTP(n) is the smallest prime such that p#-1, p#, or p#+1 is divisible by n, where p# is the primorial of p. Ashbacher (1996) shows that SNTP(n) only exists 1. If there are ...
The wave equation in prolate spheroidal coordinates is del ...
Let omega_1 and omega_2 be periods of a doubly periodic function, with tau=omega_2/omega_1 the half-period ratio a number with I[tau]!=0. Then Klein's absolute invariant ...
Q_n^((alpha,beta))(x)=2^(-n-1)(x-1)^(-alpha)(x+1)^(-beta) ×int_(-1)^1(1-t)^(n+alpha)(1+t)^(n+beta)(x-t)^(-n-1)dt. In the exceptional case n=0, alpha+beta+1=0, a nonconstant ...
The wave equation in oblate spheroidal coordinates is del ^2Phi+k^2Phi=partial/(partialxi_1)[(xi_1^2+1)(partialPhi)/(partialxi_1)] ...
A class of area-preserving maps of the form theta_(i+1) = theta_i+2pialpha(r_i) (1) r_(i+1) = r_i, (2) which maps circles into circles but with a twist resulting from the ...
The second solution Q_l(x) to the Legendre differential equation. The Legendre functions of the second kind satisfy the same recurrence relation as the Legendre polynomials. ...
The value for zeta(2)=sum_(k=1)^infty1/(k^2) (1) can be found using a number of different techniques (Apostol 1983, Choe 1987, Giesy 1972, Holme 1970, Kimble 1987, Knopp and ...
The spherical harmonics Y_l^m(theta,phi) are the angular portion of the solution to Laplace's equation in spherical coordinates where azimuthal symmetry is not present. Some ...
...
View search results from all Wolfram sites (416436 matches)

