Search Results for ""
401 - 410 of 3357 for Tau functionSearch Results
When the index nu is real, the functions J_nu(z), J_nu^'(z), Y_nu(z), and Y_nu^'(z) each have an infinite number of real zeros, all of which are simple with the possible ...
The function defined by chi_nu(z)=sum_(k=0)^infty(z^(2k+1))/((2k+1)^nu). (1) It is related to the polylogarithm by chi_nu(z) = 1/2[Li_nu(z)-Li_nu(-z)] (2) = ...
If a function phi is harmonic in a sphere, then the value of phi at the center of the sphere is the arithmetic mean of its value on the surface.
The fraction of odd values of the partition function P(n) is roughly 50%, independent of n, whereas odd values of Q(n) occur with ever decreasing frequency as n becomes ...
The spherical Bessel function of the first kind, denoted j_nu(z), is defined by j_nu(z)=sqrt(pi/(2z))J_(nu+1/2)(z), (1) where J_nu(z) is a Bessel function of the first kind ...
A function f is said to be an entire modular form of weight k if it satisfies 1. f is analytic in the upper half-plane H, 2. f((atau+b)/(ctau+d))=(ctau+d)^kf(tau) whenever [a ...
There are a number of point processes which are called Hawkes processes and while many of these notions are similar, some are rather different. There are also different ...
Let p run over all distinct primitive ordered periodic geodesics, and let tau(p) denote the positive length of p, then every even function h(rho) analytic in ...
A multiplicative number theoretic function is a number theoretic function f that has the property f(mn)=f(m)f(n) (1) for all pairs of relatively prime positive integers m and ...
The spherical Hankel function of the first kind h_n^((1))(z) is defined by h_n^((1))(z) = sqrt(pi/(2z))H_(n+1/2)^((1))(z) (1) = j_n(z)+in_n(z), (2) where H_n^((1))(z) is the ...
...
View search results from all Wolfram sites (414921 matches)

