Search Results for ""
11 - 20 of 3357 for Tau functionSearch Results
Let p run over all distinct primitive ordered periodic geodesics, and let tau(p) denote the positive length of p, then the Selberg zeta function is defined as ...
For a delta function at (x_0,y_0), R(p,tau) = int_(-infty)^inftyint_(-infty)^inftydelta(x-x_0)delta(y-y_0)delta[y-(tau+px)]dydx (1) = ...
The divisor function sigma_k(n) for n an integer is defined as the sum of the kth powers of the (positive integer) divisors of n, sigma_k(n)=sum_(d|n)d^k. (1) It is ...
A function is said to be modular (or "elliptic modular") if it satisfies: 1. f is meromorphic in the upper half-plane H, 2. f(Atau)=f(tau) for every matrix A in the modular ...
A function representable as a generalized Fourier series. Let R be a metric space with metric rho(x,y). Following Bohr (1947), a continuous function x(t) for (-infty<t<infty) ...
For a discrete function f(n), the summatory function is defined by F(n)=sum_(k in D)^nf(k), where D is the domain of the function.
An inverse function of an Abelian integral. Abelian functions have two variables and four periods, and can be defined by Theta(v,tau;q^'; ...
The two-argument Ramanujan function is defined by phi(a,n) = 1+2sum_(k=1)^(n)1/((ak)^3-ak) (1) = 1-1/a(H_(-1/a)+H_(1/a)+2H_n-H_(n-1/a)-H_(n+1/a)). (2) The one-argument ...
Let omega_1 and omega_2 be periods of a doubly periodic function, with tau=omega_2/omega_1 the half-period ratio a number with I[tau]!=0. Then Klein's absolute invariant ...
Recall the definition of the autocorrelation function C(t) of a function E(t), C(t)=int_(-infty)^inftyE^_(tau)E(t+tau)dtau. (1) Also recall that the Fourier transform of E(t) ...
...
View search results from all Wolfram sites (414921 matches)

