Search Results for ""
161 - 170 of 2285 for Symmetric Positive Definite MatrixSearch Results

The Fibonacci Q-matrix is the matrix defined by Q=[F_2 F_1; F_1 F_0]=[1 1; 1 0], (1) where F_n is a Fibonacci number. Then Q^n=[F_(n+1) F_n; F_n F_(n-1)] (2) (Honsberger ...
A Hessenberg matrix is a matrix of the form [a_(11) a_(12) a_(13) ... a_(1(n-1)) a_(1n); a_(21) a_(22) a_(23) ... a_(2(n-1)) a_(2n); 0 a_(32) a_(33) ... a_(3(n-1)) a_(3n); 0 ...
Let A be a C^*-algebra. An element a in A is called positive if a=a* and sp(a) subset= R^+, or equivalently if there exists an element b in A such that a=bb^*. For example, ...
A nonzero vector v=(v_0,v_1,...,v_(n-1)) in n-dimensional Lorentzian space R^(1,n-1) is said to be positive lightlike if it has zero (Lorentzian) norm and if its first ...
When discussing a rotation, there are two possible conventions: rotation of the axes, and rotation of the object relative to fixed axes. In R^2, consider the matrix that ...
A matrix with 0 determinant whose determinant becomes nonzero when any element on or below the diagonal is changed from 0 to 1. An example is M=[1 -1 0 0; 0 0 -1 0; 1 1 1 -1; ...
A positive measure is a measure which is a function from the measurable sets of a measure space to the nonnegative real numbers. Sometimes, this is what is meant by measure, ...
Let f:R->R, then the positive part of f is the function f^+:R->R defined by f^+(x)=max(f(x),0) The positive part satisfies the identity f=f^+-f^-, where f^- is the negative ...
A nonzero vector v=(v_0,v_1,...,v_(n-1)) in n-dimensional Lorentzian space R^(1,n-1) is said to be positive timelike if it has imaginary (Lorentzian) norm and if its first ...
A relation R on a set S is symmetric provided that for every x and y in S we have xRy iff yRx. The symmetric relations on n nodes are isomorphic with the rooted graphs on n ...

...