TOPICS
Search

Search Results for ""


151 - 160 of 2285 for Symmetric Positive Definite MatrixSearch Results
The matrix direct sum of n matrices constructs a block diagonal matrix from a set of square matrices, i.e., direct sum _(i=1)^nA_i = diag(A_1,A_2,...,A_n) (1) = [A_1 ; A_2 ; ...
A matrix H with elements H_(ij)=(i+j-1)^(-1) (1) for i,j=1, 2, ..., n. Hilbert matrices are implemented in the Wolfram Language by HilbertMatrix[m, n]. The figure above shows ...
A second-tensor rank symmetric tensor is defined as a tensor A for which A^(mn)=A^(nm). (1) Any tensor can be written as a sum of symmetric and antisymmetric parts A^(mn) = ...
Let A and B be C^*-algebras, then a linear map phi:A->B is said to be positive if phi(A_+) subset= B_+. Here, A_+ is denoted the positive part of A. For example, every ...
A symmetric polynomial on n variables x_1, ..., x_n (also called a totally symmetric polynomial) is a function that is unchanged by any permutation of its variables. In other ...
A square matrix with nonzero elements only on the diagonal and slots horizontally or vertically adjacent the diagonal (i.e., along the subdiagonal and superdiagonal), [a_(11) ...
Denote the sum of two matrices A and B (of the same dimensions) by C=A+B. The sum is defined by adding entries with the same indices c_(ij)=a_(ij)+b_(ij) over all i and j. ...
If the rank polynomial R(x,y) of a graph G is given by sumrho_(rs)x^ry^s, then rho_(rs) is the number of subgraphs of G with rank r and co-rank s, and the matrix (rho_(rs)) ...
A symmetric graph is a graph that is both edge- and vertex-transitive (Holton and Sheehan 1993, p. 209). However, care must be taken with this definition since arc-transitive ...
The ABC (atom-bond connectivity) matrix A_(ABC) of a simple graph is a weighted adjacency matrix with weight f(d_i,d_j)=sqrt((d_i+d_j-2)/(d_id_j)), (1) where d_i are the ...
1 ... 13|14|15|16|17|18|19 ... 229 Previous Next

...