Search Results for ""
81 - 90 of 662 for Spherical HarmonicSearch Results
The spherical Bessel function of the second kind, denoted y_nu(z) or n_nu(z), is defined by y_nu(z)=sqrt(pi/(2z))Y_(nu+1/2)(z), (1) where Y_nu(z) is a Bessel function of the ...
Adding a damping force proportional to x^. to the equation of simple harmonic motion, the first derivative of x with respect to time, the equation of motion for damped simple ...
Underdamped simple harmonic motion is a special case of damped simple harmonic motion x^..+betax^.+omega_0^2x=0 (1) in which beta^2-4omega_0^2<0. (2) Since we have ...
The spherical Hankel function of the first kind h_n^((1))(z) is defined by h_n^((1))(z) = sqrt(pi/(2z))H_(n+1/2)^((1))(z) (1) = j_n(z)+in_n(z), (2) where H_n^((1))(z) is the ...
The spherical Hankel function of the second kind h_n^((1))(z) is defined by h_n^((2))(z) = sqrt(pi/(2x))H_(n+1/2)^((2))(z) (1) = j_n(z)-in_n(z), (2) where H_n^((2))(z) is the ...
A modified spherical Bessel function of the first kind (Abramowitz and Stegun 1972), also called a "spherical modified Bessel function of the first kind" (Arfken 1985), is ...
The spherical Bessel function of the first kind, denoted j_nu(z), is defined by j_nu(z)=sqrt(pi/(2z))J_(nu+1/2)(z), (1) where J_nu(z) is a Bessel function of the first kind ...
On the surface of a sphere, attempt separation of variables in spherical coordinates by writing F(theta,phi)=Theta(theta)Phi(phi), (1) then the Helmholtz differential ...
In spherical coordinates, the scale factors are h_r=1, h_theta=rsinphi, h_phi=r, and the separation functions are f_1(r)=r^2, f_2(theta)=1, f_3(phi)=sinphi, giving a Stäckel ...
Given a simple harmonic oscillator with a quadratic perturbation, write the perturbation term in the form alphaepsilonx^2, x^..+omega_0^2x-alphaepsilonx^2=0, (1) find the ...
...
View search results from all Wolfram sites (5593 matches)

