Search Results for ""
61 - 70 of 662 for Spherical HarmonicSearch Results
![](/common/images/search/spacer.gif)
A solution to the spherical Bessel differential equation. The two types of solutions are denoted j_n(x) (spherical Bessel function of the first kind) or n_n(x) (spherical ...
A number n for which the harmonic mean of the divisors of n, i.e., nd(n)/sigma(n), is an integer, where d(n)=sigma_0(n) is the number of positive integer divisors of n and ...
The harmonic conjugate to a given function u(x,y) is a function v(x,y) such that f(x,y)=u(x,y)+iv(x,y) is complex differentiable (i.e., satisfies the Cauchy-Riemann ...
Simple harmonic motion refers to the periodic sinusoidal oscillation of an object or quantity. Simple harmonic motion is executed by any quantity obeying the differential ...
The alternating harmonic series is the series sum_(k=1)^infty((-1)^(k-1))/k=ln2, which is the special case eta(1) of the Dirichlet eta function eta(z) and also the x=1 case ...
The spherical curve obtained when moving along the surface of a sphere with constant speed, while maintaining a constant angular velocity with respect to a fixed diameter ...
AW, AB, and AY in the above figure are in a harmonic range.
Let alpha_(n+1) = (2alpha_nbeta_n)/(alpha_n+beta_n) (1) beta_(n+1) = sqrt(alpha_nbeta_n), (2) then H(alpha_0,beta_0)=lim_(n->infty)a_n=1/(M(alpha_0^(-1),beta_0^(-1))), (3) ...
Let [a_0;a_1,a_2,...] be the simple continued fraction of a "generic" real number, where the numbers a_i are the partial quotients. Then the Khinchin (or Khintchine) harmonic ...
Let a_(n+1) = 1/2(a_n+b_n) (1) b_(n+1) = (2a_nb_n)/(a_n+b_n). (2) Then A(a_0,b_0)=lim_(n->infty)a_n=lim_(n->infty)b_n=sqrt(a_0b_0), (3) which is just the geometric mean.
![](/common/images/search/spacer.gif)
...