TOPICS
Search

Search Results for ""


71 - 80 of 2579 for Spherical Bessel Differential EquationSearch Results
(dy)/(dx)+p(x)y=q(x)y^n. (1) Let v=y^(1-n) for n!=1. Then (dv)/(dx)=(1-n)y^(-n)(dy)/(dx). (2) Rewriting (1) gives y^(-n)(dy)/(dx) = q(x)-p(x)y^(1-n) (3) = q(x)-vp(x). (4) ...
A symmetry of a differential equation is a transformation that keeps its family of solutions invariant. Symmetry analysis can be used to solve some ordinary and partial ...
The third-order ordinary differential equation 2y^(''')+yy^('')=0. This equation arises in the theory of fluid boundary layers, and must be solved numerically (Rosenhead ...
The second-order ordinary differential equation (d^2y)/(dx^2)-2x(dy)/(dx)+lambday=0. (1) This differential equation has an irregular singularity at infty. It can be solved ...
The second-order ordinary differential equation y^('')+(y^')/x+(1-(nu^2)/(x^2))y=(x-nu)/(pix^2)sin(pinu) whose solutions are Anger functions.
The Laguerre differential equation is given by xy^('')+(1-x)y^'+lambday=0. (1) Equation (1) is a special case of the more general associated Laguerre differential equation, ...
The second-order ordinary differential equation y^('')+2xy^'-2ny=0, (1) whose solutions may be written either y=Aerfc_n(x)+Berfc_n(-x), (2) where erfc_n(x) is the repeated ...
(1-x^2)(d^2y)/(dx^2)-x(dy)/(dx)+alpha^2y=0 (1) for |x|<1. The Chebyshev differential equation has regular singular points at -1, 1, and infty. It can be solved by series ...
A natural extension of the Riemann p-differential equation given by (d^2w)/(dx^2)+(gamma/x+delta/(x-1)+epsilon/(x-a))(dw)/(dx)+(alphabetax-q)/(x(x-1)(x-a))w=0 where ...
The most general forced form of the Duffing equation is x^..+deltax^.+(betax^3+/-omega_0^2x)=gammacos(omegat+phi). (1) Depending on the parameters chosen, the equation can ...
1 ... 5|6|7|8|9|10|11 ... 258 Previous Next

...