TOPICS
Search

Search Results for ""


61 - 70 of 2579 for Spherical Bessel Differential EquationSearch Results
The solution to the differential equation [D^(2v)+alphaD^v+betaD^0]y(t)=0 (1) is y(t)={e_alpha(t)-e_beta(t) for alpha!=beta; ...
The second-order ordinary differential equation (Moon and Spencer 1961, p. 157; Zwillinger 1997, p. 166).
The ordinary differential equation y^'=-y(1+kappa(x)y)/(1-kappa(x)y).
A universal differential equation (UDE) is a nontrivial differential-algebraic equation with the property that its solutions approximate to arbitrary accuracy any continuous ...
The Legendre differential equation is the second-order ordinary differential equation (1-x^2)(d^2y)/(dx^2)-2x(dy)/(dx)+l(l+1)y=0, (1) which can be rewritten ...
(d^2V)/(dv^2)+[a-2qcos(2v)]V=0 (1) (Abramowitz and Stegun 1972; Zwillinger 1997, p. 125), having solution y=C_1C(a,q,v)+C_2S(a,q,v), (2) where C(a,q,v) and S(a,q,v) are ...
The differential equation where alpha+alpha^'+beta+beta^'+gamma+gamma^'=1, first obtained in the form by Papperitz (1885; Barnes 1908). Solutions are Riemann P-series ...
z(1-z)(d^2y)/(dz^2)+[c-(a+b+1)z](dy)/(dz)-aby=0. It has regular singular points at 0, 1, and infty. Every second-order ordinary differential equation with at most three ...
y=x(dy)/(dx)+f((dy)/(dx)) (1) or y=px+f(p), (2) where f is a function of one variable and p=dy/dx. The general solution is y=cx+f(c). (3) The singular solution envelopes are ...
y^('')-mu(1-1/3y^('2))y^'+y=0, where mu>0. Differentiating and setting y=y^' gives the van der Pol equation. The equation y^('')-mu(1-y^('2))y^'+y=0 with the 1/3 replaced by ...
1 ... 4|5|6|7|8|9|10 ... 258 Previous Next

...