The differential equation
where
first obtained in the form by Papperitz (1885; Barnes 1908). Solutions are Riemann P-series (Abramowitz and Stegun 1972, pp. 564-565). Zwillinger (1995, p. 414)
confusingly calls this equation the "hypergeometric equation."
See also Heun's Differential Equation ,
Riemann P-Series
Explore with Wolfram|Alpha
References Abramowitz, M. and Stegun, I. A. (Eds.). "Riemann's Differential Equation." §15.6 in Handbook
of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing.
New York: Dover, pp. 564-565, 1972. Barnes, E. W. "A New
Development in the Theory of the Hypergeometric Functions." Proc. London
Math. Soc. 6 , 141-177, 1908. Morse, P. M. and Feshbach,
H. Methods
of Theoretical Physics, Part I. New York: McGraw-Hill, pp. 541-543,
1953. Papperitz. Math. Ann. 25 , 213, 1885. Zwillinger,
D. (Ed.). CRC
Standard Mathematical Tables and Formulae. Boca Raton, FL: CRC Press, 1995. Zwillinger,
D. Handbook
of Differential Equations, 3rd ed. Boston, MA: Academic Press, p. 126,
1997. Referenced on Wolfram|Alpha Riemann P-Differential Equation
Cite this as:
Weisstein, Eric W. "Riemann P-Differential Equation." From MathWorld --A Wolfram Web Resource. https://mathworld.wolfram.com/RiemannP-DifferentialEquation.html
Subject classifications