TOPICS
Search

Search Results for ""


381 - 390 of 2579 for Spherical Bessel Differential EquationSearch Results
J_m(x)=(x^m)/(2^(m-1)sqrt(pi)Gamma(m+1/2))int_0^1cos(xt)(1-t^2)^(m-1/2)dt, where J_m(x) is a Bessel function of the first kind and Gamma(z) is the gamma function. Hankel's ...
A general quadratic Diophantine equation in two variables x and y is given by ax^2+cy^2=k, (1) where a, c, and k are specified (positive or negative) integers and x and y are ...
The Rayleigh functions sigma_n(nu) for n=1, 2, ..., are defined as sigma_n(nu)=sum_(k=1)^inftyj_(nu,k)^(-2n), where +/-j_(nu,k) are the zeros of the Bessel function of the ...
The 7.1.2 equation A^7+B^7=C^7 (1) is a special case of Fermat's last theorem with n=7, and so has no solution. No solutions to the 7.1.3, 7.1.4, 7.1.5, 7.1.6 equations are ...
The 8.1.2 equation A^8+B^8=C^8 (1) is a special case of Fermat's last theorem with n=8, and so has no solution. No 8.1.3, 8.1.4, 8.1.5, 8.1.6, or 8.1.7 solutions are known. ...
There are at least two integrals called the Poisson integral. The first is also known as Bessel's second integral, ...
As a part of the study of Waring's problem, it is known that every positive integer is a sum of no more than 9 positive cubes (g(3)=9), that every "sufficiently large" ...
As a consequence of Matiyasevich's refutation of Hilbert's 10th problem, it can be proved that there does not exist a general algorithm for solving a general quartic ...
The 5.1.2 fifth-order Diophantine equation A^5=B^5+C^5 (1) is a special case of Fermat's last theorem with n=5, and so has no solution. improving on the results on Lander et ...
The 9.1.2 equation A^9=B^9+C^9 (1) is a special case of Fermat's last theorem with n=9, and so has no solution. No 9.1.3, 9.1.4, 9.1.5, 9.1.6, 9.1.7, 9.1.8, or 9.1.9 ...
1 ... 36|37|38|39|40|41|42 ... 258 Previous Next

...