Search Results for ""
131 - 140 of 2579 for Spherical Bessel Differential EquationSearch Results
In parabolic cylindrical coordinates, the scale factors are h_u=h_v=sqrt(u^2+v^2), h_z=1 and the separation functions are f_1(u)=f_2(v)=f_3(z)=1, giving Stäckel determinant ...
To solve the system of differential equations (dx)/(dt)=Ax(t)+p(t), (1) where A is a matrix and x and p are vectors, first consider the homogeneous case with p=0. The ...
As shown by Morse and Feshbach (1953), the Helmholtz differential equation is separable in confocal paraboloidal coordinates.
An interpolation formula, sometimes known as the Newton-Bessel formula, given by (1) for p in [0,1], where delta is the central difference and B_(2n) = 1/2G_(2n) (2) = ...
Differential Equations
The scalar form of Laplace's equation is the partial differential equation del ^2psi=0, (1) where del ^2 is the Laplacian. Note that the operator del ^2 is commonly written ...
The spherical harmonics Y_l^m(theta,phi) are the angular portion of the solution to Laplace's equation in spherical coordinates where azimuthal symmetry is not present. Some ...
To solve the heat conduction equation on a two-dimensional disk of radius a=1, try to separate the equation using U(r,theta,t)=R(r)Theta(theta)T(t). (1) Writing the theta and ...
The spherical harmonics can be generalized to vector spherical harmonics by looking for a scalar function psi and a constant vector c such that M = del x(cpsi) (1) = psi(del ...
An indicial equation, also called a characteristic equation, is a recurrence equation obtained during application of the Frobenius method of solving a second-order ordinary ...
...