Search Results for ""
111 - 120 of 2579 for Spherical Bessel Differential EquationSearch Results
![](/common/images/search/spacer.gif)
An ordinary differential equation of order n is an equation of the form F(x,y,y^',...,y^((n)))=0.
The associated Legendre differential equation is a generalization of the Legendre differential equation given by d/(dx)[(1-x^2)(dy)/(dx)]+[l(l+1)-(m^2)/(1-x^2)]y=0, (1) which ...
As shown by Morse and Feshbach (1953) and Arfken (1970), the Helmholtz differential equation is separable in oblate spheroidal coordinates.
As shown by Morse and Feshbach (1953) and Arfken (1970), the Helmholtz differential equation is separable in prolate spheroidal coordinates.
In two-dimensional Cartesian coordinates, attempt separation of variables by writing F(x,y)=X(x)Y(y), (1) then the Helmholtz differential equation becomes ...
Consider a first-order ODE in the slightly different form p(x,y)dx+q(x,y)dy=0. (1) Such an equation is said to be exact if (partialp)/(partialy)=(partialq)/(partialx). (2) ...
The Euler-Lagrange differential equation is the fundamental equation of calculus of variations. It states that if J is defined by an integral of the form J=intf(t,y,y^.)dt, ...
A generalization of the confluent hypergeometric differential equation given by (1) The solutions are given by y_1 = x^(-A)e^(-f(x))_1F_1(a;b;h(x)) (2) y_2 = ...
The generalized hypergeometric function F(x)=_pF_q[alpha_1,alpha_2,...,alpha_p; beta_1,beta_2,...,beta_q;x] satisfies the equation where theta=x(partial/partialx) is the ...
An ordinary differential equation of the form y^('')+P(x)y^'+Q(x)y=0. (1) Such an equation has singularities for finite x=x_0 under the following conditions: (a) If either ...
![](/common/images/search/spacer.gif)
...