The associated Legendre differential equation is a generalization of the Legendre differential equation given by
(1)
|
which can be written
(2)
|
(Abramowitz and Stegun 1972; Zwillinger 1997, p. 124). The solutions to this equation are called the associated Legendre polynomials (if is an integer), or associated Legendre functions of the first kind (if is not an integer). The complete solution is
(3)
|
where is a Legendre function of the second kind.
The associated Legendre differential equation is often written in a form obtained by setting . Plugging the identities
(4)
| |||
(5)
| |||
(6)
| |||
(7)
|
into (◇) then gives
(8)
|
(9)
|