TOPICS
Search

Search Results for ""


2121 - 2130 of 3276 for Special Unitary GroupSearch Results
A number which is simultaneously a heptagonal number Hep_n and hexagonal number Hex_m. Such numbers exist when 1/2n(5n-3)=m(2m-1). (1) Completing the square and rearranging ...
A number which is simultaneously a heptagonal number H_n and pentagonal number P_m. Such numbers exist when 1/2n(5n-3)=1/2m(3m-1). (1) Completing the square and rearranging ...
A number which is simultaneously a heptagonal number H_n and square number S_m. Such numbers exist when 1/2n(5n-3)=m^2. (1) Completing the square and rearranging gives ...
A number which is simultaneously a heptagonal number H_n and triangular number T_m. Such numbers exist when 1/2n(5n-3)=1/2m(m+1). (1) Completing the square and rearranging ...
The heptanacci numbers are a generalization of the Fibonacci numbers defined by H_0=0, H_1=1, H_2=1, H_3=2, H_4=4, H_5=8, H_6=16, and the recurrence relation ...
Lambda_0(phi|m)=(F(phi|1-m))/(K(1-m))+2/piK(m)Z(phi|1-m), where phi is the Jacobi amplitude, m is the parameter, Z is the Jacobi zeta function, and F(phi|m^') and K(m) are ...
A number which is simultaneously pentagonal and hexagonal. Let P_n denote the nth pentagonal number and H_m the mth hexagonal number, then a number which is both pentagonal ...
Let H_n denote the nth hexagonal number and S_m the mth square number, then a number which is both hexagonal and square satisfies the equation H_n=S_m, or n(2n-1)=m^2. (1) ...
The hexanacci numbers are a generalization of the Fibonacci numbers defined by H_0=0, H_1=1, H_2=1, H_3=2, H_4=4, H_5=8, and the recurrence relation ...
The Hh-function is a function closely related to the normal distribution function. It can be defined using the auxilary functions Z(x) = 1/(sqrt(2pi))e^(-x^2/2) (1) Q(x) = ...
1 ... 210|211|212|213|214|215|216 ... 328 Previous Next

...