TOPICS
Search

Heptagonal Hexagonal Number


A number which is simultaneously a heptagonal number Hep_n and hexagonal number Hex_m. Such numbers exist when

 1/2n(5n-3)=m(2m-1).
(1)

Completing the square and rearranging gives

 (10n-3)^2-5(4m-1)^2=4.
(2)

Substituting x=10n-3 and y=4m-1 gives the Pell-like quadratic Diophantine equation

 x^2-5y^2=4,
(3)

which has solutions (x,y)=(3,1), (7, 3), (18, 8), (47, 21), (123, 55), .... The integer solutions in m and n are then given by (n,m)=(1,1), (221, 247), (71065, 79453), (22882613, 25583539), ... (OEIS A048902 and A048901), corresponding to the heptagonal hexagonal numbers 1, 121771, 12625478965, 1309034909945503, ... (OEIS A048903).


See also

Heptagonal Number, Hexagonal Number

Explore with Wolfram|Alpha

References

Sloane, N. J. A. Sequences A048901, A048902, and A048903 in "The On-Line Encyclopedia of Integer Sequences."

Referenced on Wolfram|Alpha

Heptagonal Hexagonal Number

Cite this as:

Weisstein, Eric W. "Heptagonal Hexagonal Number." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/HeptagonalHexagonalNumber.html

Subject classifications