TOPICS
Search

Search Results for ""


1371 - 1380 of 3276 for Special Unitary GroupSearch Results
A number given by the generating function (2t)/(e^t+1)=sum_(n=1)^inftyG_n(t^n)/(n!). (1) It satisfies G_1=1, G_3=G_5=G_7=...=0, and even coefficients are given by G_(2n) = ...
The Griewank function is a function widely used to test the convergence of optimization functions. The Griewank function of order n is defined by ...
The numbers H_n=H_n(0), where H_n(x) is a Hermite polynomial, may be called Hermite numbers. For n=0, 1, ..., the first few are 1, 0, -2, 0, 12, 0, -120, 0, 1680, 0, ... ...
The Gelfond-Schneider constant is sometimes known as the Hilbert number. Flannery and Flannery (2000, p. 35) define a Hilbert number as a positive integer of the form n=4k+1 ...
A composite number defined analogously to a Smith number except that the sum of the number's digits equals the sum of the digits of its distinct prime factors (excluding 1). ...
The idempotent numbers are given by B_(n,k)(1,2,3,...)=(n; k)k^(n-k), where B_(n,k) is a Bell polynomial and (n; k) is a binomial coefficient. A table of the first few is ...
The identity function id(x) is the function id(x)=x which assigns every real number x to the same real number x. It is identical to the identity map. The identity function is ...
The inner Napoleon triangle is the triangle DeltaN_AN_BN_C formed by the centers of internally erected equilateral triangles DeltaABE_C, DeltaACE_B, and DeltaBCE_A on the ...
The Jacobsthal polynomials are the W-polynomial obtained by setting p(x)=1 and q(x)=2x in the Lucas polynomial sequence. The first few Jacobsthal polynomials are J_1(x) = 1 ...
Kelvin defined the Kelvin functions bei and ber according to ber_nu(x)+ibei_nu(x) = J_nu(xe^(3pii/4)) (1) = e^(nupii)J_nu(xe^(-pii/4)), (2) = e^(nupii/2)I_nu(xe^(pii/4)) (3) ...
1 ... 135|136|137|138|139|140|141 ... 328 Previous Next

...