TOPICS
Search

Search Results for ""


721 - 730 of 2717 for Sequences and seriesSearch Results
The Jacobi triple product is the beautiful identity product_(n=1)^infty(1-x^(2n))(1+x^(2n-1)z^2)(1+(x^(2n-1))/(z^2))=sum_(m=-infty)^inftyx^(m^2)z^(2m). (1) In terms of the ...
An alkane graph is a tree in which vertices correspond to atoms and edges to carbon-carbon or hydrogen-carbon bonds in a chemical alkane. In chemistry, an alkane is an ...
The BBP (named after Bailey-Borwein-Plouffe) is a formula for calculating pi discovered by Simon Plouffe in 1995, ...
Given two normal subgroups G_1 and G_2 of a group, and two normal subgroups H_1 and H_2 of G_1 and G_2 respectively, H_1(G_1 intersection H_2) is normal in H_1(G_1 ...
Clausen's integral, sometimes called the log sine integral (Borwein and Bailey 2003, p. 88) is the n=2 case of the S_2 Clausen function Cl_2(theta) = ...
A discrete function A(n,k) is called closed form (or sometimes "hypergeometric") in two variables if the ratios A(n+1,k)/A(n,k) and A(n,k+1)/A(n,k) are both rational ...
The constant a_(-1) in the Laurent series f(z)=sum_(n=-infty)^inftya_n(z-z_0)^n (1) of f(z) about a point z_0 is called the residue of f(z). If f is analytic at z_0, its ...
_3F_2[n,-x,-y; x+n+1,y+n+1] =Gamma(x+n+1)Gamma(y+n+1)Gamma(1/2n+1)Gamma(x+y+1/2n+1) ×Gamma(n+1)Gamma(x+y+n+1)Gamma(x+1/2n+1)Gamma(y+1/2n+1), (1) where _3F_2(a,b,c;d,e;z) is a ...
The Euler polynomial E_n(x) is given by the Appell sequence with g(t)=1/2(e^t+1), (1) giving the generating function (2e^(xt))/(e^t+1)=sum_(n=0)^inftyE_n(x)(t^n)/(n!). (2) ...
Jackson's theorem is a statement about the error E_n(f) of the best uniform approximation to a real function f(x) on [-1,1] by real polynomials of degree at most n. Let f(x) ...
1 ... 70|71|72|73|74|75|76 ... 272 Previous Next

...