Search Results for ""
531 - 540 of 2717 for Sequences and seriesSearch Results

A nilpotent Lie group is a Lie group G which is connected and whose Lie algebra is a nilpotent Lie algebra g. That is, its Lie algebra lower central series ...
If (1-z)^(alpha+beta-gamma-1/2)_2F_1(2alpha,2beta;2gamma;z)=sum_(n=0)^inftya_nz^n, (1) where _2F_1(a,b;c;z) is a hypergeometric function, then (2) where (a)_n is a Pochhammer ...
The Poisson sum formula is a special case of the general result sum_(-infty)^inftyf(x+n)=sum_(k=-infty)^inftye^(2piikx)int_(-infty)^inftyf(x^')e^(-2piikx^')dx^' (1) with x=0, ...
The quintuple product identity, also called the Watson quintuple product identity, states (1) It can also be written (2) or (3) The quintuple product identity can be written ...
The Rayleigh functions sigma_n(nu) for n=1, 2, ..., are defined as sigma_n(nu)=sum_(k=1)^inftyj_(nu,k)^(-2n), where +/-j_(nu,k) are the zeros of the Bessel function of the ...
A q-analog of the Chu-Vandermonde identity given by where _2phi_1(a,b;c;q,z) is the q-hypergeometric function. The identity can also be written as ...
A q-analog of the gamma function defined by Gamma_q(x)=((q;q)_infty)/((q^x;q)_infty)(1-q)^(1-x), (1) where (x,q)_infty is a q-Pochhammer symbol (Koepf 1998, p. 26; Koekoek ...
A q-analog of Gauss's theorem due to Jacobi and Heine, _2phi_1(a,b;c;q,c/(ab))=((c/a;q)_infty(c/b;q)_infty)/((c;q)_infty(c/(ab);q)_infty) (1) for |c/(ab)|<1 (Gordon and ...
Define the nome by q=e^(-piK^'(k)/K(k))=e^(ipitau), (1) where K(k) is the complete elliptic integral of the first kind with modulus k, K^'(k)=K(sqrt(1-k^2)) is the ...
Start with an integer n, known as the digitaddition generator. Add the sum of the digitaddition generator's digits to obtain the digitaddition n^'. A number can have more ...

...