The Poisson sum formula is a special case of the general result
 |
(1)
|
with
,
yielding
 |
(2)
|
Given
a nonnegative, continuous, decreasing, and Riemann integrable function of
, define
 |
(3)
|
Then the Poisson sum formula states that
![sqrt(alpha)[1/2phi(0)+sum_(n=1)^inftyphi(nalpha)]=sqrt(beta)[1/2psi(0)+sum_(n=1)^inftypsi(nbeta)]](/images/equations/PoissonSumFormula/NumberedEquation4.svg) |
(4)
|
whenever
(Hardy 1999, p. 14). It follows from this formula that
![sqrt(alpha)[1/2+sum_(n=1)^inftye^(-alpha^2n^2/2)]=sqrt(beta)[1/2+sum_(n=1)^inftye^(-beta^2n^2/2)]](/images/equations/PoissonSumFormula/NumberedEquation5.svg) |
(5)
|
(Apostol 1974, pp. 322-333; Borwein and Borwein 1987, pp. 36-40).
Explore with Wolfram|Alpha
References
Apostol, T. M. Mathematical Analysis. Reading, MA: Addison-Wesley, 1974.Borwein, J. M.
and Borwein, P. B. "Poisson Summation." §2.2 in Pi
& the AGM: A Study in Analytic Number Theory and Computational Complexity.
New York: Wiley, 1987.Hardy, G. H. Ramanujan:
Twelve Lectures on Subjects Suggested by His Life and Work, 3rd ed. New York:
Chelsea, 1999.Morse, P. M. and Feshbach, H. Methods
of Theoretical Physics, Part I. New York: McGraw-Hill, pp. 466-467,
1953.Referenced on Wolfram|Alpha
Poisson Sum Formula
Cite this as:
Weisstein, Eric W. "Poisson Sum Formula."
From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/PoissonSumFormula.html
Subject classifications