Search Results for ""
1151 - 1160 of 2717 for Sequences and seriesSearch Results
At the age of 17, Bernard Mares proposed the definite integral (Borwein and Bailey 2003, p. 26; Bailey et al. 2006) C_2 = int_0^inftycos(2x)product_(n=1)^(infty)cos(x/n)dx ...
Let S(T) be the group of symmetries which map a monohedral tiling T onto itself. The transitivity class of a given tile T is then the collection of all tiles to which T can ...
The jinc function is defined as jinc(x)=(J_1(x))/x, (1) where J_1(x) is a Bessel function of the first kind, and satisfies lim_(x->0)jinc(x)=1/2. The derivative of the jinc ...
Find the minimum number f(n) of subsets in a separating family for a set of n elements, where a separating family is a set of subsets in which each pair of adjacent elements ...
The problem of determining how many nonattacking kings can be placed on an n×n chessboard. For n=8, the solution is 16, as illustrated above (Madachy 1979). In general, the ...
For every k>=1, let C_k be the set of composite numbers n>k such that if 1<a<n, GCD(a,n)=1 (where GCD is the greatest common divisor), then a^(n-k)=1 (mod n). Special cases ...
An approximation for the gamma function Gamma(z+1) with R[z]>0 is given by Gamma(z+1)=sqrt(2pi)(z+sigma+1/2)^(z+1/2)e^(-(z+sigma+1/2))sum_(k=0)^inftyg_kH_k(z), (1) where ...
The term "left factorial" is sometimes used to refer to the subfactorial !n, the first few values for n=1, 2, ... are 1, 3, 9, 33, 153, 873, 5913, ... (OEIS A007489). ...
A Lehmer number is a number generated by a generalization of a Lucas sequence. Let alpha and beta be complex numbers with alpha+beta = sqrt(R) (1) alphabeta = Q, (2) where Q ...
The Leibniz harmonic triangle is the number triangle given by 1/11/2 1/21/3 1/6 1/31/4 1/(12) 1/(12) 1/41/5 1/(20) 1/(30) 1/(20) 1/5 (1) (OEIS A003506), where each fraction ...
...