TOPICS
Search

Search Results for ""


931 - 940 of 3891 for Second Order Ordinary Differential Equat...Search Results
Let J_nu(z) be a Bessel function of the first kind, Y_nu(z) a Bessel function of the second kind, and K_nu(z) a modified Bessel function of the first kind. Then ...
The spherical Hankel function of the first kind h_n^((1))(z) is defined by h_n^((1))(z) = sqrt(pi/(2z))H_(n+1/2)^((1))(z) (1) = j_n(z)+in_n(z), (2) where H_n^((1))(z) is the ...
Conditions arising in the study of the Robbins axiom and its connection with Boolean algebra. Winkler studied Boolean conditions (such as idempotence or existence of a zero) ...
The first and second Zagreb indices for a graph with vertex count n and vertex degrees v_i for i=1, ..., n are defined by Z_1=sum_(i=1)^nv_i^2 and Z_2=sum_((i,j) in ...
Kelvin defined the Kelvin functions bei and ber according to ber_nu(x)+ibei_nu(x) = J_nu(xe^(3pii/4)) (1) = e^(nupii)J_nu(xe^(-pii/4)), (2) = e^(nupii/2)I_nu(xe^(pii/4)) (3) ...
The (associated) Legendre function of the first kind P_n^m(z) is the solution to the Legendre differential equation which is regular at the origin. For m,n integers and z ...
The Mittag-Leffler function (Mittag-Leffler 1903, 1905) is an entire function defined by the series E_alpha(z)=sum_(k=0)^infty(z^k)/(Gamma(alphak+1)) (1) for alpha>0. It is ...
A spheroidal harmonic is a special case of an ellipsoidal harmonic that satisfies the differential equation d/(dx)[(1-x^2)(dS)/(dx)]+(lambda-c^2x^2-(m^2)/(1-x^2))S=0 on the ...
A Kähler metric is a Riemannian metric g on a complex manifold which gives M a Kähler structure, i.e., it is a Kähler manifold with a Kähler form. However, the term "Kähler ...
The Kronecker sum is the matrix sum defined by A direct sum B=A tensor I_b+I_a tensor B, (1) where A and B are square matrices of order a and b, respectively, I_n is the ...
1 ... 91|92|93|94|95|96|97 ... 390 Previous Next

...