TOPICS
Search

Search Results for ""


3681 - 3690 of 3891 for Second Order Ordinary Differential Equat...Search Results
For s>1, the Riemann zeta function is given by zeta(s) = sum_(n=1)^(infty)1/(n^s) (1) = product_(k=1)^(infty)1/(1-1/(p_k^s)), (2) where p_k is the kth prime. This is Euler's ...
A root-finding method which was among the most popular methods for finding roots of univariate polynomials in the 19th and 20th centuries. It was invented independently by ...
Consider the recurrence equation defined by a_0=m and a_n=|_sqrt(2a_(n-1)(a_(n-1)+1))_|, (1) where |_x_| is the floor function. Graham and Pollak actually defined a_1=m, but ...
The smallest nontrivial taxicab number, i.e., the smallest number representable in two ways as a sum of two cubes. It is given by 1729=1^3+12^3=9^3+10^3. The number derives ...
The recursive sequence defined by the recurrence relation a(n)=a(a(n-1))+a(n-a(n-1)) (1) with a(1)=a(2)=1. The first few values are 1, 1, 2, 2, 3, 4, 4, 4, 5, 6, ... (OEIS ...
The inverse cosine is the multivalued function cos^(-1)z (Zwillinger 1995, p. 465), also denoted arccosz (Abramowitz and Stegun 1972, p. 79; Harris and Stocker 1998, p. 307; ...
Let R(z) be a rational function R(z)=(P(z))/(Q(z)), (1) where z in C^*, C^* is the Riemann sphere C union {infty}, and P and Q are polynomials without common divisors. The ...
The nth root of the denominator B_n of the nth convergent A_n/B_n of a number x tends to a constant lim_(n->infty)B_n^(1/n) = e^beta (1) = e^(pi^2/(12ln2)) (2) = 3.275823... ...
The function lambda(n)=(-1)^(Omega(n)), (1) where Omega(n) is the number of not necessarily distinct prime factors of n, with Omega(1)=0. The values of lambda(n) for n=1, 2, ...
Zygmund (1988, p. 192) noted that there exists a number alpha_0 in (0,1) such that for each alpha>=alpha_0, the partial sums of the series sum_(n=1)^(infty)n^(-alpha)cos(nx) ...
1 ... 366|367|368|369|370|371|372 ... 390 Previous Next

...