Search Results for ""
491 - 500 of 13134 for SPECIAL TOPICSSearch Results
The polynomials M_k(x;delta,eta) which form the Sheffer sequence for g(t) = {[1+deltaf(t)]^2+[f(t)]^2}^(eta/2) (1) f(t) = tan(t/(1+deltat)) (2) which have generating function ...
(e^(ypsi_0(x))Gamma(x))/(Gamma(x+y))=product_(n=0)^infty(1+y/(n+x))e^(-y/(n+x)), where psi_0(x) is the digamma function and Gamma(x) is the gamma function.
A number b_(2n) having generating function sum_(n=0)^(infty)b_(2n)x^(2n) = 1/2ln((e^(x/2)-e^(-x/2))/(1/2x)) (1) = 1/2ln2+1/(48)x^2-1/(5760)x^4+1/(362880)x^6-.... (2) For n=1, ...
Polynomials s_k(x) which form the Sheffer sequence for f(t)=-(2t)/(1-t^2) (1) and have exponential generating function ...
A multidimensional polylogarithm is a generalization of the usual polylogarithm to L_(a_1,...,a_m)(z)=sum_(n_1>...>n_m>0)(z^(n_1))/(n_1^(a_1)...n_m^(a_m)) with positive ...
The Poisson integral with n=0, J_0(z)=1/piint_0^picos(zcostheta)dtheta, where J_0(z) is a Bessel function of the first kind.
I((chi_s^2)/(sqrt(2(k-1))),(k-3)/2)=(Gamma(1/2chi_s^2,(k-1)/2))/(Gamma((k-1)/2)), where Gamma(x) is the gamma function.
The Pell-Lucas polynomials Q(x) are the w-polynomials generated by the Lucas polynomial sequence using the generator p(x)=2x, q(x)=1. The first few are Q_1(x) = 2x (1) Q_2(x) ...
A hypergeometric class of orthogonal polynomials defined by R_n(lambda(x);alpha,beta,gamma,delta) =_4F_3(-n,n+alpha+beta+1,-x,x+gamma+delta+1; alpha+1,beta+delta+1,gamma+1;1) ...
The two-argument Ramanujan function is defined by phi(a,n) = 1+2sum_(k=1)^(n)1/((ak)^3-ak) (1) = 1-1/a(H_(-1/a)+H_(1/a)+2H_n-H_(n-1/a)-H_(n+1/a)). (2) The one-argument ...
...
View search results from all Wolfram sites (52311 matches)

