Search Results for ""
1671 - 1680 of 13135 for Reynolds numberSearch Results

A Gröbner basis G for a system of polynomials A is an equivalence system that possesses useful properties, for example, that another polynomial f is a combination of those in ...
A sphere is defined as the set of all points in three-dimensional Euclidean space R^3 that are located at a distance r (the "radius") from a given point (the "center"). Twice ...
"Chaos" is a tricky thing to define. In fact, it is much easier to list properties that a system described as "chaotic" has rather than to give a precise definition of chaos. ...
A Belphegor prime (also known as a Beelphegor prime) is a prime Belphegor number, i.e., a palindromic prime of the form 1(0...)666(0...)1. The first few Belphegor primes are ...
The fibonorial n!_F, also called the Fibonacci factorial, is defined as n!_F=product_(k=1)^nF_k, where F_k is a Fibonacci number. For n=1, 2, ..., the first few fibonorials ...
Let x be a positive number, and define lambda(d) = mu(d)[ln(x/d)]^2 (1) f(n) = sum_(d)lambda(d), (2) where the sum extends over the divisors d of n, and mu(n) is the Möbius ...
Let F_n be the nth Fibonacci number, and let (p|5) be a Legendre symbol so that e_p=(p/5)={1 for p=1,4 (mod 5); -1 for p=2,3 (mod 5). (1) A prime p is called a Wall-Sun-Sun ...
The value of the 2^0 bit in a binary number. For the sequence of numbers 1, 2, 3, 4, ..., the least significant bits are therefore the alternating sequence 1, 0, 1, 0, 1, 0, ...
A fraction containing each of the digits 1 through 9 is called a pandigital fraction. The following table gives the number of pandigital fractions which represent simple unit ...
The nth cubic number n^3 is a sum of n consecutive odd numbers, for example 1^3 = 1 (1) 2^3 = 3+5 (2) 3^3 = 7+9+11 (3) 4^3 = 13+15+17+19, (4) etc. This identity follows from ...

...