TOPICS
Search

Search Results for ""


1 - 10 of 3930 for Regularized Beta FunctionSearch Results
The regularized beta function is defined by I(z;a,b)=(B(z;a,b))/(B(a,b)), where B(z;a,b) is the incomplete beta function and B(a,b) is the (complete) beta function. The ...
A financial measure of a fund's sensitivity to market movements which measures the relationship between a fund's excess return over Treasury Bills and the excess return of a ...
The beta function B(p,q) is the name used by Legendre and Whittaker and Watson (1990) for the beta integral (also called the Eulerian integral of the first kind). It is ...
The central beta function is defined by beta(p)=B(p,p), (1) where B(p,q) is the beta function. It satisfies the identities beta(p) = 2^(1-2p)B(p,1/2) (2) = ...
A generalization of the complete beta function defined by B(z;a,b)=int_0^zu^(a-1)(1-u)^(b-1)du, (1) sometimes also denoted B_z(a,b). The so-called Chebyshev integral is given ...
The regularized gamma functions are defined by P(a,z) = (gamma(a,z))/(Gamma(a)) (1) Q(a,z) = (Gamma(a,z))/(Gamma(a)), (2) where gamma(a,z) and Gamma(a,z) are incomplete gamma ...
A q-analog of the beta function B(a,b) = int_0^1t^(a-1)(1-t)^(b-1)dt (1) = (Gamma(a)Gamma(b))/(Gamma(a+b)), (2) where Gamma(z) is a gamma function, is given by B_q(a,b) = ...
Another "beta function" defined in terms of an integral is the "exponential" beta function, given by beta_n(z) = int_(-1)^1t^ne^(-zt)dt (1) = ...
The Dirichlet beta function is defined by the sum beta(x) = sum_(n=0)^(infty)(-1)^n(2n+1)^(-x) (1) = 2^(-x)Phi(-1,x,1/2), (2) where Phi(z,s,a) is the Lerch transcendent. The ...
Given a hypergeometric or generalized hypergeometric function _pF_q(a_1,...,a_p;b_1,...,b_q;z), the corresponding regularized hypergeometric function is defined by where ...
1|2|3|4 ... 393 Next

...