Search Results for ""
171 - 180 of 1289 for Quaternion GroupSearch Results
![](/common/images/search/spacer.gif)
Let Gamma be a representation for a group of group order h, then sum_(R)Gamma_i(R)_(mn)Gamma_j(R)_(m^'n^')^*=h/(sqrt(l_il_j))delta_(ij)delta_(mm^')delta_(nn^'). The proof is ...
The projective special linear group PSL_n(q) is the group obtained from the special linear group SL_n(q) on factoring by the scalar matrices contained in that group. It is ...
A primitive subgroup of the symmetric group S_n is equal to either the alternating group A_n or S_n whenever it contains at least one permutation which is a q-cycle for some ...
The finite group C_2×C_2 is one of the two distinct groups of group order 4. The name of this group derives from the fact that it is a group direct product of two C_2 ...
The Higman-Sims group is the sporadic group HS of order |HS| = 44352000 (1) = 2^9·3^2·5^3·7·11. (2) The Higman-Sims group is 2-transitive, and has permutation representations ...
In a monoid or multiplicative group where the operation is a product ·, the multiplicative inverse of any element g is the element g^(-1) such that g·g^(-1)=g^(-1)·g=1, with ...
The set lambda of linear Möbius transformations w which satisfy w(t)=(at+b)/(ct+d), where a and d are odd and b and c are even. lambda is a subgroup of the modular group ...
The group of all nonsingular n×n stochastic matrices over a field F. It is denoted S(n,F). If p is prime and F is the finite field of order q=p^m, S(n,q) is written instead ...
A Hajós group is a group for which all factorizations of the form (say) Z_n=A direct sum B have A or B periodic, where the period is a divisor of n. Hajós groups arose after ...
The Harada-Norton group is the sporadic group HN of order |HN| = 273030912000000 (1) = 2^(14)·3^6·5^6·7·11·19. (2) It is implemented in the Wolfram Language as ...
![](/common/images/search/spacer.gif)
...