TOPICS
Search

Group Orthogonality Theorem


Let Gamma be a representation for a group of group order h, then

 sum_(R)Gamma_i(R)_(mn)Gamma_j(R)_(m^'n^')^*=h/(sqrt(l_il_j))delta_(ij)delta_(mm^')delta_(nn^').

The proof is nontrivial and may be found in Eyring et al. (1944).


See also

Group, Group Character, Irreducible Representation

Explore with Wolfram|Alpha

References

Eyring, H.; Walter, J.; and Kimball, G. E. Quantum Chemistry. New York: Wiley, p. 371, 1944.

Referenced on Wolfram|Alpha

Group Orthogonality Theorem

Cite this as:

Weisstein, Eric W. "Group Orthogonality Theorem." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/GroupOrthogonalityTheorem.html

Subject classifications