TOPICS
Search

Search Results for ""


1 - 10 of 622 for Quadratic InvariantSearch Results
Given the binary quadratic form ax^2+2bxy+cy^2 (1) with polynomial discriminant b^2-ac, let x = pX+qY (2) y = rX+sY. (3) Then a(pX+qY)^2+2b(pX+qY)(rX+sY)+c(rX+sY)^2 ...
The quantity ps-rq obtained by letting x = pX+qY (1) y = rX+sY (2) in ax^2+2bxy+cy^2 (3) so that A = ap^2+2bpr+cr^2 (4) B = apq+b(ps+qr)+crs (5) C = aq^2+2bqs+cs^2 (6) and ...
A quantity which remains unchanged under certain classes of transformations. Invariants are extremely useful for classifying mathematical objects because they usually reflect ...
The Latin prefix quadri- is used to indicate the number 4, for example, quadrilateral, quadrant, etc. However, it also very commonly used to denote objects involving the ...
An invariant of an elliptic curve given in the form y^2=x^3+ax+b which is closely related to the elliptic discriminant and defined by j(E)=(2^83^3a^3)/(4a^3+27b^2). The ...
A quantity such as a polynomial discriminant which remains unchanged under a given class of algebraic transformations. Such invariants were originally called ...
A binary quadratic form is a quadratic form in two variables having the form Q(x,y)=ax^2+2bxy+cy^2, (1) commonly denoted <a,b,c>. Consider a binary quadratic form with real ...
A link invariant is a function from the set of all links to any other set such that the function does not change as the link is changed (up to isotopy). In other words, a ...
Given a general quadratic curve Ax^2+Bxy+Cy^2+Dx+Ey+F=0, (1) the quantity X is known as the discriminant, where X=B^2-4AC, (2) and is invariant under rotation. Using the ...
An invariant set S subset R^n is said to be a C^r (r>=1) invariant manifold if S has the structure of a C^r differentiable manifold (Wiggins 1990, p. 14). When stable and ...
1|2|3|4 ... 63 Next

...