Search Results for ""
1831 - 1840 of 13135 for Palindromic Number ConjectureSearch Results

Let phi_x^((k)) denote the recursive function of k variables with Gödel number x, where (1) is normally omitted. Then if g is a partial recursive function, there exists an ...
A theorem, also called the iteration theorem, that makes use of the lambda notation introduced by Church. Let phi_x^((k)) denote the recursive function of k variables with ...
A formal logic developed by Alonzo Church and Stephen Kleene to address the computable number problem. In the lambda calculus, lambda is defined as the abstraction operator. ...
The series for the inverse tangent, tan^(-1)x=x-1/3x^3+1/5x^5+.... Plugging in x=1 gives Gregory's formula 1/4pi=1-1/3+1/5-1/7+1/9-.... This series is intimately connected ...
Module multiplicity is a number associated with every nonzero finitely generated graded module M over a graded ring R for which the Hilbert series is defined. If dim(M)=d, ...
In a set X equipped with a binary operation · called a product, the multiplicative identity is an element e such that e·x=x·e=x for all x in X. It can be, for example, the ...
One would think that by analogy with the matching-generating polynomial, independence polynomial, etc., a path polynomial whose coefficients are the numbers of paths of ...
Ramsey's theorem is a generalization of Dilworth's lemma which states for each pair of positive integers k and l there exists an integer R(k,l) (known as the Ramsey number) ...
The maximal number of regions into which space can be divided by n planes is f(n)=1/6(n^3+5n+6) (Yaglom and Yaglom 1987, pp. 102-106). For n=1, 2, ..., these give the values ...
The number of staircase walks on a grid with m horizontal lines and n vertical lines is given by (m+n; m)=((m+n)!)/(m!n!) (Vilenkin 1971, Mohanty 1979, Narayana 1979, Finch ...

...