Search Results for ""
421 - 430 of 5121 for Odd/even/prime/composite/square numbersSearch Results
Vizing's theorem states that a graph can be edge-colored in either Delta or Delta+1 colors, where Delta is the maximum vertex degree of the graph. A graph with edge chromatic ...
The fibonorial n!_F, also called the Fibonacci factorial, is defined as n!_F=product_(k=1)^nF_k, where F_k is a Fibonacci number. For n=1, 2, ..., the first few fibonorials ...
Honaker's problem asks for all consecutive prime number triples (p,q,r) with p<q<r such that p|(qr+1). Caldwell and Cheng (2005) showed that the only Honaker triplets for ...
A figurate number Te_n of the form Te_n = sum_(k=1)^(n)T_k (1) = 1/6n(n+1)(n+2) (2) = (n+2; 3), (3) where T_k is the kth triangular number and (n; m) is a binomial ...
A curvilinear polygon built up of circular arcs. The Reuleaux polygon is a generalization of the Reuleaux triangle and, for an odd number of sides, is a curve of constant ...
A two-graph (V,Delta) on nodes V is a collection Delta of unordered triples of the vertices (the so-called "odd triples") such that each 4-tuple of V contains an even number ...
If f_1(x), ..., f_s(x) are irreducible polynomials with integer coefficients such that no integer n>1 divides f_1(x), ..., f_s(x) for all integers x, then there should exist ...
A friend of a number n is another number m such that (m,n) is a friendly pair.
A number n is k-multiperfect (also called a k-multiply perfect number or k-pluperfect number) if sigma(n)=kn for some integer k>2, where sigma(n) is the divisor function. The ...
Thâbit ibn Kurrah's rules is a beautiful result of Thâbit ibn Kurrah dating back to the tenth century (Woepcke 1852; Escott 1946; Dickson 2005, pp. 5 and 39; Borho 1972). ...
...