TOPICS
Search

Search Results for ""


501 - 510 of 3164 for OTHER FUNCTIONSSearch Results
_0F_1(;a;z)=lim_(q->infty)_1F_1(q;a;z/q). (1) It has a series expansion _0F_1(;a;z)=sum_(n=0)^infty(z^n)/((a)_nn!) (2) and satisfies z(d^2y)/(dz^2)+a(dy)/(dz)-y=0. (3) It is ...
The E_n(x) function is defined by the integral E_n(x)=int_1^infty(e^(-xt)dt)/(t^n) (1) and is given by the Wolfram Language function ExpIntegralE[n, x]. Defining t=eta^(-1) ...
The Hadamard product is a representation for the Riemann zeta function zeta(s) as a product over its nontrivial zeros rho, ...
A generalization of the complete beta function defined by B(z;a,b)=int_0^zu^(a-1)(1-u)^(b-1)du, (1) sometimes also denoted B_z(a,b). The so-called Chebyshev integral is given ...
Landau (1911) proved that for any fixed x>1, sum_(0<|I[rho]|<=T)x^rho=-T/(2pi)Lambda(x)+O(lnT) as T->infty, where the sum runs over the nontrivial Riemann zeta function zeros ...
Special functions which arise as solutions to second order ordinary differential equations are commonly said to be "of the first kind" if they are nonsingular at the origin, ...
A function f(x) is absolutely monotonic in the interval a<x<b if it has nonnegative derivatives of all orders in the region, i.e., f^((k))(x)>=0 (1) for a<x<b and k=0, 1, 2, ...
Special cases of general formulas due to Bessel. J_0(sqrt(z^2-y^2))=1/piint_0^pie^(ycostheta)cos(zsintheta)dtheta, where J_0(z) is a Bessel function of the first kind. Now, ...
The exsecant is a little-used trigonometric function defined by exsec(x)=secx-1, (1) where secx is the secant. The exsecant can be extended to the complex plane as ...
For r and x real, with 0<=arg(sqrt(k^2-tau^2))<pi and 0<=argk<pi, 1/2iint_(-infty)^inftyH_0^((1))(rsqrt(k^2-tau^2))e^(itaux)dtau=(e^(iksqrt(r^2+x^2)))/(sqrt(r^2+x^2)), where ...
1 ... 48|49|50|51|52|53|54 ... 317 Previous Next

...