Search Results for ""
421 - 430 of 3164 for OTHER FUNCTIONSSearch Results
The polynomials G_n(x;a,b) given by the associated Sheffer sequence with f(t)=e^(at)(e^(bt)-1), (1) where b!=0. The inverse function (and therefore generating function) ...
A Lyapunov function is a scalar function V(y) defined on a region D that is continuous, positive definite, V(y)>0 for all y!=0), and has continuous first-order partial ...
The vertical line test is a graphical method of determining whether a curve in the plane represents the graph of a function by visually examining the number of intersections ...
H_n^((2))(z)=J_n(z)-iY_n(z), (1) where J_n(z) is a Bessel function of the first kind and Y_n(z) is a Bessel function of the second kind. Hankel functions of the second kind ...
nu(x) = int_0^infty(x^tdt)/(Gamma(t+1)) (1) nu(x,alpha) = int_0^infty(x^(alpha+t)dt)/(Gamma(alpha+t+1)), (2) where Gamma(z) is the gamma function (Erdélyi et al. 1981, p. ...
The spherical Hankel function of the second kind h_n^((1))(z) is defined by h_n^((2))(z) = sqrt(pi/(2x))H_(n+1/2)^((2))(z) (1) = j_n(z)-in_n(z), (2) where H_n^((2))(z) is the ...
The prime zeta function P(s)=sum_(p)1/(p^s), (1) where the sum is taken over primes is a generalization of the Riemann zeta function zeta(s)=sum_(k=1)^infty1/(k^s), (2) where ...
The inverse hyperbolic cosine cosh^(-1)z (Beyer 1987, p. 181; Zwillinger 1995, p. 481), sometimes called the area hyperbolic cosine (Harris and Stocker 1998, p. 264) is the ...
Let E_1(x) be the En-function with n=1, E_1(x) = int_1^infty(e^(-tx)dt)/t (1) = int_x^infty(e^(-u)du)/u. (2) Then define the exponential integral Ei(x) by E_1(x)=-Ei(-x), (3) ...
There are several functions called "Lommel functions." One type of Lommel function appear in the solution to the Lommel differential equation and are given by ...
...