Search Results for ""
391 - 400 of 3164 for OTHER FUNCTIONSSearch Results
A partial function is a function that is not total.
A Bessel function of the second kind Y_n(x) (e.g, Gradshteyn and Ryzhik 2000, p. 703, eqn. 6.649.1), sometimes also denoted N_n(x) (e.g, Gradshteyn and Ryzhik 2000, p. 657, ...
A set of orthogonal functions {phi_n(x)} is termed complete in the closed interval x in [a,b] if, for every piecewise continuous function f(x) in the interval, the minimum ...
The Hankel functions of the first kind are defined as H_n^((1))(z)=J_n(z)+iY_n(z), (1) where J_n(z) is a Bessel function of the first kind and Y_n(z) is a Bessel function of ...
The kei_nu(z) function is defined as the imaginary part of e^(-nupii/2)K_nu(ze^(pii/4))=ker_nu(z)+ikei_nu(z), (1) where K_nu(z) is a modified Bessel function of the second ...
There are two definitions of the Carmichael function. One is the reduced totient function (also called the least universal exponent function), defined as the smallest integer ...
A modified spherical Bessel function of the first kind (Abramowitz and Stegun 1972), also called a "spherical modified Bessel function of the first kind" (Arfken 1985), is ...
A real function is said to be differentiable at a point if its derivative exists at that point. The notion of differentiability can also be extended to complex functions ...
A multiplicative number theoretic function is a number theoretic function f that has the property f(mn)=f(m)f(n) (1) for all pairs of relatively prime positive integers m and ...
The gamma product (e.g., Prudnikov et al. 1986, pp. 22 and 792), is defined by Gamma[a_1,...,a_m; b_1,...,b_n]=(Gamma(a_1)...Gamma(a_m))/(Gamma(b_1)...Gamma(b_n)), where ...
...