Search Results for ""
2071 - 2080 of 3164 for OTHER FUNCTIONSSearch Results

There are two incompatible definitions of the squircle. The first defines the squircle as the quartic plane curve which is special case of the superellipse with a=b and r=4, ...
The stability index Z^_(G) of a graph G is defined by Z^_=sum_(k=0)^(|_n/2_|)|c_(2k)|, where c_k is the kth coefficient of the characteristic polynomial and |_n_| denotes the ...
The radical circle of the Stammler circles has center at the nine-point center N, which is Kimberling center X_5. The radius is given by R_S = sqrt(R^2+ON^2) (1) = ...
The geometric centroid of the system obtained by placing a mass equal to the magnitude of the exterior angle at each vertex (Honsberger 1995, p. 120) is called the Steiner ...
A figurate number of the form StOct_n = O_n+8Te_(n-1) (1) = n(2n^2-1), (2) where O_n is an octahedral number and Te_n is a tetrahedral number. The first few are 1, 14, 51, ...
For omega a differential (k-1)-form with compact support on an oriented k-dimensional manifold with boundary M, int_Mdomega=int_(partialM)omega, (1) where domega is the ...
The multiplicative suborder of a number a (mod n) is the least exponent e>0 such that a^e=+/-1 (mod n), or zero if no such e exists. An e always exists if GCD(a,n)=1 and n>1. ...
A superior highly composite number is a positive integer n for which there is an e>0 such that (d(n))/(n^e)>=(d(k))/(k^e) for all k>1, where the function d(n) counts the ...
A number n such that sigma^2(n)=sigma(sigma(n))=2n, where sigma(n) is the divisor function is called a superperfect number. Even superperfect numbers are just 2^(p-1), where ...
A symmetric bilinear form on a vector space V is a bilinear function Q:V×V->R (1) which satisfies Q(v,w)=Q(w,v). For example, if A is a n×n symmetric matrix, then ...

...