TOPICS
Search

Search Results for ""


1811 - 1820 of 13135 for OTHER ANALYSISSearch Results
If a contour in the complex plane is curved such that it separates the increasing and decreasing sequences of poles, then ...
k_nu(x)=(e^(-x))/(Gamma(1+1/2nu))U(-1/2nu,0,2x) for x>0, where U is a confluent hypergeometric function of the second kind.
An identity in calculus of variations discovered in 1868 by Beltrami. The Euler-Lagrange differential equation is (partialf)/(partialy)-d/(dx)((partialf)/(partialy_x))=0. (1) ...
The partial differential equation u_t+u_x+uu_x-u_(xxt)=0 (Benjamin et al. 1972; Arvin and Goldstein 1985; Zwillinger 1997, p. 130). A generalized version is given by u_t-del ...
The Benney equation in 1+1 dimensions is the nonlinear partial differential equation ...
(dy)/(dx)+p(x)y=q(x)y^n. (1) Let v=y^(1-n) for n!=1. Then (dv)/(dx)=(1-n)y^(-n)(dy)/(dx). (2) Rewriting (1) gives y^(-n)(dy)/(dx) = q(x)-p(x)y^(1-n) (3) = q(x)-vp(x). (4) ...
The Bernoulli inequality states (1+x)^n>1+nx, (1) where x>-1!=0 is a real number and n>1 an integer. This inequality can be proven by taking a Maclaurin series of (1+x)^n, ...
A number defined by b_n=b_n(0), where b_n(x) is a Bernoulli polynomial of the second kind (Roman 1984, p. 294), also called Cauchy numbers of the first kind. The first few ...
Polynomials b_n(x) which form a Sheffer sequence with g(t) = t/(e^t-1) (1) f(t) = e^t-1, (2) giving generating function sum_(k=0)^infty(b_k(x))/(k!)t^k=(t(t+1)^x)/(ln(1+t)). ...
The longstanding conjecture that the nonimaginary solutions E_n of zeta(1/2+iE_n)=0, (1) where zeta(z) is the Riemann zeta function, are the eigenvalues of an "appropriate" ...
1 ... 179|180|181|182|183|184|185 ... 1314 Previous Next

...