Bateman Function


for x>0, where U is a confluent hypergeometric function of the second kind.

See also

Confluent Hypergeometric Differential Equation, Hypergeometric Function

Explore with Wolfram|Alpha


Bateman, H. "The k-Function, a Particular Case of the Confluent Hypergeometric Function." Trans. Amer. Math. Soc. 33, 817-831, 1931.Koepf, W. Hypergeometric Summation: An Algorithmic Approach to Summation and Special Function Identities. Braunschweig, Germany: Vieweg, p. 179, 1998.Koepf, W. and Schmersau, D. "Bounded Nonvanishing Functions are Bateman Functions." Complex Variables 25, 237-259, 1994.

Referenced on Wolfram|Alpha

Bateman Function

Cite this as:

Weisstein, Eric W. "Bateman Function." From MathWorld--A Wolfram Web Resource.

Subject classifications