for , where is a confluent hypergeometric function of the second kind.
Bateman Function
See also
Confluent Hypergeometric Differential Equation, Hypergeometric FunctionExplore with Wolfram|Alpha
References
Bateman, H. "The -Function, a Particular Case of the Confluent Hypergeometric Function." Trans. Amer. Math. Soc. 33, 817-831, 1931.Koepf, W. Hypergeometric Summation: An Algorithmic Approach to Summation and Special Function Identities. Braunschweig, Germany: Vieweg, p. 179, 1998.Koepf, W. and Schmersau, D. "Bounded Nonvanishing Functions are Bateman Functions." Complex Variables 25, 237-259, 1994.Referenced on Wolfram|Alpha
Bateman FunctionCite this as:
Weisstein, Eric W. "Bateman Function." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/BatemanFunction.html