Search Results for ""
761 - 770 of 1564 for Monotonic SequenceSearch Results
![](/common/images/search/spacer.gif)
The Fibonacci factorial constant is the constant appearing in the asymptotic growth of the fibonorials (aka. Fibonacci factorials) n!_F. It is given by the infinite product ...
Consider a Lucas sequence with P>0 and Q=+/-1. A Fibonacci pseudoprime is a composite number n such that V_n=P (mod n). There exist no even Fibonacci pseudoprimes with ...
The Fibonacci Q-matrix is the matrix defined by Q=[F_2 F_1; F_1 F_0]=[1 1; 1 0], (1) where F_n is a Fibonacci number. Then Q^n=[F_(n+1) F_n; F_n F_(n-1)] (2) (Honsberger ...
The fibonomial coefficient (sometimes also called simply the Fibonacci coefficient) is defined by [m; k]_F=(F_mF_(m-1)...F_(m-k+1))/(F_1F_2...F_k), (1) where [m; 0]_F=1 and ...
The fibonorial n!_F, also called the Fibonacci factorial, is defined as n!_F=product_(k=1)^nF_k, where F_k is a Fibonacci number. For n=1, 2, ..., the first few fibonorials ...
The q-series identity product_(n=1)^(infty)((1-q^(2n))(1-q^(3n))(1-q^(8n))(1-q^(12n)))/((1-q^n)(1-q^(24n))) = ...
An extension field F subset= K is called finite if the dimension of K as a vector space over F (the so-called degree of K over F) is finite. A finite field extension is ...
For any sequence of integers 0<n_1<...<n_k, there is a flag manifold of type (n_1, ..., n_k) which is the collection of ordered sets of vector subspaces of R^(n_k) (V_1, ..., ...
The Flint Hills series is the series S_1=sum_(n=1)^infty(csc^2n)/(n^3) (Pickover 2002, p. 59). It is not known if this series converges, since csc^2n can have sporadic large ...
A formal power series, sometimes simply called a "formal series" (Wilf 1994), of a field F is an infinite sequence {a_0,a_1,a_2,...} over F. Equivalently, it is a function ...
![](/common/images/search/spacer.gif)
...